7 research outputs found

    A Nonintrusive, Adaptable and User-Friendly In Situ Visualization Framework

    Get PDF
    Reducing the amount of data stored by simulations will be of utmost importance for the next generation of large-scale computing. Accordingly, there is active research to shift analysis and visualization tasks to run in situ, i.e. closer to the simulation via the sharing of some resources. This is beneficial as it can avoid the necessity of storing large amounts of data for post-processing. In this paper, we focus on the specific case of in situ visualization where analysis codes are collocated with the simulation's code and run on the same resources. It is important for an in situ technique to require minimum modifications to existing codes, be adaptable and have a low impact on both run times and resource usage. We accomplish this through the Damaris/Viz framework, which provides in situ visualization support to the Damaris I/O middleware. The use of Damaris as a bridge to existing visualization packages allows us to (1) reduce code moditications to a minimum for existing simulations, (2) gather capabilities of several visualization tools to offer a unified data management interface, (3) use dedicated cores to hide the run time impact of in situ visualization and (4) efficiently use memory through a shared-memory-based communication model. Experiments are conducted on Blue Waters and Grid5000 to visualize the CM1 atmospheric simulation and the Nek5000 CFD solver

    Damaris/Viz: a Nonintrusive, Adaptable and User-Friendly In Situ Visualization Framework

    Get PDF
    International audienceReducing the amount of data stored by simulations will be of utmost importance for the next generation of large-scale computing. Accordingly, there is active research to shift analysis and visualization tasks to run in situ, that is, closer to the simulation via the sharing of some resources. This is beneficial as it can avoid the necessity of storing large amounts of data for post-processing. In this paper, we focus on the specific case of in situ visualization where analysis codes are collocated with the simulation's code and run on the same resources. It is important for an in situ technique to require minimum modifications to existing codes, be adaptable, and have a low impact on both run times and resource usage. We accomplish this through the Damaris/Viz framework, which provides in situ visualization support to the Damaris I/O middleware. The use of Damaris as a bridge to existing visualization packages allows us to (1) reduce code moditication to a minimum for existing simulations, (2) gather capabilities of several visualization tools to offer a unified data management interface, (3) use dedicated cores to hide the run time impact of in situ visualization and (4) efficiently use memory through a shared-memory-based communication model. Experiments are conducted on Blue Waters and Grid'5000 to visualize the CM1 atmospheric simulation and the Nek5000 CFD solver

    Description of Emergency Medical Services, treatment of cardiac arrest patients and cardiac arrest registries in Europe

    No full text
    Background: Variation in the incidence, survival rate and factors associated with survival after cardiac arrest in Europe is reported. Some studies have tried to fill the knowledge gap regarding the epidemiology of out-of-hospital cardiac arrest in Europe but were unable to identify reasons for the reported differences. Therefore, the purpose of this study was to describe European Emergency Medical Systems, particularly from the perspective of country and ambulance service characteristics, cardiac arrest identification, dispatch, treatment, and monitoring. Methods: An online questionnaire with 51 questions about ambulance and dispatch characteristics, on-scene management of cardiac arrest and the availability and dataset in cardiac arrest registries, was sent to all national coordinators who participated in the European Registry of Cardiac Arrest studies. In addition, individual invitations were sent to the remaining European countries. Results: Participants from 28 European countries responded to the questionnaire. Results were combined with official information on population density. Overall, the number of Emergency Medical Service missions, level of training of personnel, availability of Helicopter Emergency Medical Services and the involvement of first responders varied across and within countries. There were similarities in team training, availability of key resuscitation equipment and permission for ongoing performance of cardiopulmonary resuscitation during transported. The quality of reporting to cardiac arrest registries varied, as well as the data availability in the registries. Conclusions: Throughout Europe there are important differences in Emergency Medical Service systems and the response to out-of-hospital cardiac arrest. Explaining these differences is complicated due to significant variation in how variables are reported to and used in registries
    corecore